

STUDIO ASSOCIATO GEOLOGICA Dott. Geol. Daniele Chiuminatto & Corrado Duregon Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. 348/6008399 - e-mail: info@studiogeologica.it

Partita I.V.A. 01089590077

REGIONE PIEMONTE

CITTA' METROPOLITANA DI TORINO

COMUNE VAL DI CHY

INTERVENTI DI MESSA IN SICUREZZA DEL TRATTO DI STRADA PROVINCIALE N.64 dal Km 6+500 al km 7+000 circa

Codice CUP: G12C20000000001 – Cod. CIG: 86479756BA
PROGETTO DEFINITIVO ESECUTIVO

RELAZIONE GEOLOGICA

(D.M. 11/03/1988 e D.M. 17/01/2018)

Committente: COMUNE VAL DI CHY

1	PRE	MESSA	3
2	LOC	CALIZZAZIONE GEOGRAFICA	3
3	REI	AZIONE GEOLOGICA	4
	3.1	ASPETTI GEOMORFOLOGICI E GEOLOGICI	4
	3.2	ANALISI DEL QUADRO DISSESTIVO A CARICO DELL'AREA DI INTERVENTO	5
	3.3	DEFINIZIONE MODELLO GEOLOGICO	7
	3.4	DESCRIZIONE DELL'INTERVENTO	10
4	REI	AZIONE GEOTECNICA	13
	4.1	CARATTERISTICHE E RISULTATI DELL'INDAGINE PENETROMETRICA	13
	4.2	CARATTERIZZAZIONE GEOTECNICA DEI TERRENI	13
	4.3	CALCOLO PRELIMINARE DEL CARICO ULTIMO DEL TERRENO DI FONDAZIONE	15
	4.3.1	Metodo di Terzaghi	15
	4.3.2	Metodo di Meyerhof	16
	4.3.3	Risultati delle simulazioni	17
	4.4	CALCOLO PRELIMINARE DEI CEDIMENTI DI FONDAZIONI DI TIPO SUPERFICIALE	18
5	MO	DELLO GEOFISICO	19
	5.1	PROSPEZIONE SISMICA DI TIPO "MASW" (MULTICHANNEL ANALYSIS OF SURFACE WAVES) E	
	CATEGO	RIA DI SUOLO DI FONDAZIONE	19
	5.2	PARAMETRI SISMICI E CATEGORIA DI SUOLO DI FONDAZIONE	23
6	CO	NCLUSIONI	27

	STUDIO ASSOCIATO GEOLOGICA Geol. Chiuminatto & Duregon Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Codice: P242S1	Attività: COS	Versione: V00
		Titolo Elaborato: Relazione geologica		Data:
			nittente: i Val di Chy	Febbraio 2022
	Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 2 di 28

1 PREMESSA

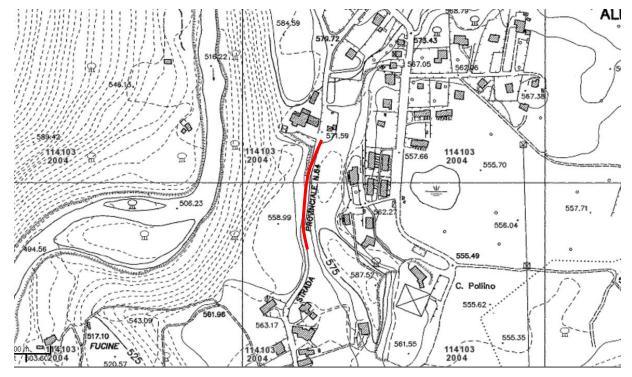
Su incarico del Comune di Val di Chy è stata effettuata un'indagine geologica relativa alla progettazione definitiva ed esecutiva degli "Interventi di messa in sicurezza del tratto di strada Provinciale n.64 dal km 6+500 al km 7+000".

L'intervento riguarda il tratto di Strada Provinciale tra la Località Gauna al bivio per Rueglio. Questo tratto ha una sezione stradale ristretta ed aderente al versante collinare con curve che limitano la visibilità rendendo pericolosa la percorrenza dei numerosi pedoni. L'intenzione dell'amministrazione è l'allargamento della banchina stradale di circa 1 m, allargando il tratto di strada verso monte.

L'indagine è stata finalizzata alla definizione delle caratteristiche geomorfologiche, geologiche, idrogeologiche e geotecniche dei terreni sui quali insiste il tratto di strada provinciale.

Sono stati pertanto effettuati alcuni sopralluoghi, estesi alle aree circostanti, nel corso dei quali sono state realizzate n. 3 prove penetrometriche dinamiche con penetrometro superpesante in 3 punti a lato strada e una prospezione sismica di tipo MASW per la definizione della categoria di sottosuolo sul terrazzino presente sul lato di monte della strada.

La presente relazione ottempera alle prescrizioni contenute nelle "Norme tecniche riguardanti le indagini su terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione", fissate dal D.M. 11/03/88 e "norme tecniche per le costruzioni" D.M. 17/01/2018.


2 LOCALIZZAZIONE GEOGRAFICA

Le opere previste in progetto sono finalizzate all'allargamento della banchina esistente dal km 6+500 al km 7+000, da quota di 565 a quota 573 m s.l.m. (*vedi Corografia*).

Il settore oggetto d'intervento ha il seguente riscontro cartografico:

- Tavoletta I.G.M. a scala 1:25.000 42 II NO "Vistrorio";
- Carta Tecnica Regionale a scala 1:10.000 elemento n. 114100;
- Carta Tecnica della Provincia di Torino a scala 1:5000 elemento n. 114103;

STUDIO ASSOCIATO STUDIO ASSOCIATO	Codice: P242S1	Attività: COS	Versione: V00
GEOLOGICA Geol. Chiuminatto & Duregon Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Titolo Elaborato: Relazione geologica		Data:
		nittente: i Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 3 di 28

Estratto CTP cittametropolitana.torino.it/cartoview/

Tratto di strada provinciale oggetto d'intervento

3 RELAZIONE GEOLOGICA

3.1 Aspetti geomorfologici e geologici

La strada si sviluppa su un terrazzo rilevato in sponda sinistra del Torrente Chiusella che scorre a circa 160 m di distanza in direzione Ovest.

La morfologia dell'area è strettamente connessa ai fenomeni del glacialismo pleistocenico; durante il Pleistocene medio un ghiacciaio proveniente dalla Valchiusella si raccordava con quello Balteo, proveniente dalla Valle d'Aosta, rilasciando al fronte ed ai fianchi i materiali esarati lungo il percorso. Nelle successive fasi glaciali il Ghiacciaio Balteo, di dimensioni notevolmente maggiori rispetto a quello della Valchiusella, ha approfondito il proprio piano basale (esarazione glaciale di fondo) edificando contemporaneamente potenti cordoni laterali (le morene). Ogni filo di cresta delle morene è legato ad una precisa pulsazione glaciale. Il risultato è la presenza di tre gruppi di cerchie moreniche sub-parallele, intervallate da valli interglaciali.

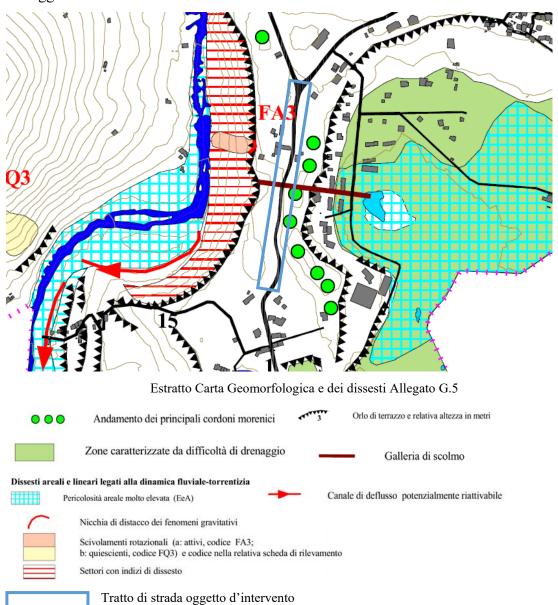
STUDIO ASSOCIATO GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Codice: P242S1	Attività: COS	Versione: V00
	Titolo Elaborato: Relazione geologica		Data: Febbraio 2022
	Committente: Comune di Val di Chy		
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 4 di 28

I depositi glaciali sono formati da materiali a varia granulometria: ghiaie e sabbie con ciottoli e trovanti immersi in matrice limosa.

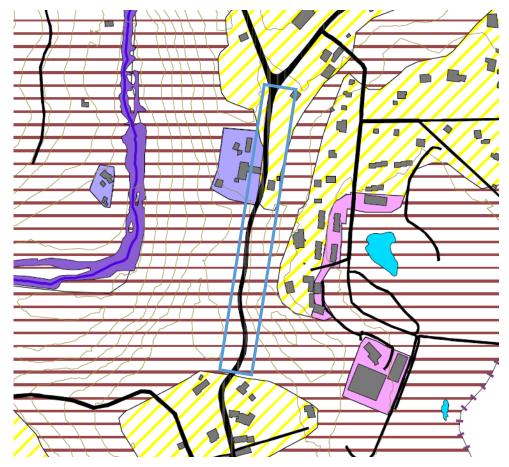
In superficie è generalmente presente una coltre di alterazione di spessore vario, da 0.5 a 1.5 m, costituita da materiali eluvio-colluviali a composizione prevalentemente limo-argillosa.

I depositi glaciali poggiano direttamente sul substrato costituito dalle rocce appartenenti al dominio geologico noto in letteratura come "Zona del Canavese". Si tratta di un insieme di litotipi trascorsi lungo il lineamento insubrico sino ad interporsi, durante la fase mesoalpina, tra le rocce della Zona Ivrea-Verbano (dominio Sudalpino) a sud e la Zona Sesia-Lanzo (dominio Austroalpino) a nord. Tra le rocce della Zona del Canavese è possibile distinguere litotipi corrispondenti in origine ad un basamento costituito da litotipi di copertura di origine sedimentaria ed età mesozoica. Alle prime appartengono le rocce intrusive quali i graniti rosa e bianchi e rocce effusive (rioliti, vulcanoclastiti); tra le seconde, oltre ai calcari dolomitici, sono presenti scisti pelitici, arenarie, brecce, radiolariti.

3.2 Analisi del quadro dissestivo a carico dell'area di intervento


L'analisi degli elaborati disponibili sull'area oggetto d'intervento ha evidenziato come essa si collochi esternamente a quelle interessate da fenomeni dissestivi.

In particolare sono stati consultati:


- Piano stralcio per l'Assetto Idrogeologico (PAI) Atlante dei rischi idraulici e idrogeologici - F° 114 SEZ.III – LESSOLO;
- Arpa Piemonte S.I.F.R.AP. Sistema Informativo Frane in Piemonte;
- Regione Piemonte Settore Difesa del suolo;
- Carta Geomorfologica e dei dissesti Allegato G.5 alla Verifica di Compatibilità idraulica e idrogeologica a supporto dello strumento urbanistico a Cura del Dott. Geol. Carlo Dellarole del settembre 2018, (Vedi estratto).
- Carta di Sintesi Allegato G.6 alla Verifica di Compatibilità idraulica e idrogeologica a supporto dello strumento urbanistico a Cura del Dott. Geol. Carlo Dellarole del settembre 2018, (Vedi estratto) inserisce il tratto di strada in parte in classe IIIa e in parte in classe II.

STUDIO ASSOCIATO STUDIO ASSOCIATO	Codice: P242S1	Attività: COS	Versione: V00
GEOLOGICA Geol. Chiuminatto & Duregon Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Titolo Elaborato: Relazione geologica		Data:
		nittente: li Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 5 di 28

Da segnalare la presenza della Galleria di scolmo della Torbiera di Alice Superiore (risalente alla prima metà dell'800) che attraversa i terreni al di sotto della strada in oggetto.

STUDIO ASSOCIATO STUDIO ASSOCIATO	Codice: P242S1	Attività: COS	Versione: V00
GEOLOGICA Geol. Chiuminatto & Duregon Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Titolo Elaborato: Relazione geologica		Data:
		nittente: li Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 6 di 28

Estratto Carta di Sintesi Allegato G.6

CLASSE II : Porzioni di territorio nelle quali le condizioni di moderata pericolosità geomorfologica possono essere agevolmente superate attraverso l'adozione ed il rispetto di modesti accorgimenti tecnici ai sensi del D.M. 17.01.2018

CLASSE IIIa : Fasce di rispetto dei corsi d'acqua. Settori di versante inedificati che presentano caratteri geomorfologici o idrogeologici che li rendono inidonei a nuovi insediamenti . In tali aree potranno essere ammessi bassi fabbricati di modeste dimensioni ad uso agricolo. I fabbricati isolati presenti in tale ambito dovranno essere considerati appartenenti alla classe III b 3

Tratto di strada oggetto d'intervento

3.3 Definizione modello geologico

L'assetto litostratigrafico della zona è stato dedotto dall'analisi dei numerosi affioramenti di depositi glaciali presenti in zona e dai dati bibliografici esistenti.

© STUDIO ASSOCIATO G F O L O G L C A	Codice: P242S1	Attività: COS	Versione: V00
GEOLOGICA Geol. Chiuminatto & Duregon Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Titolo Elaborato: Relazione geologica		Data:
		nittente: li Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 7 di 28

Foto 1 Vista del prato sul lato di valle della strada

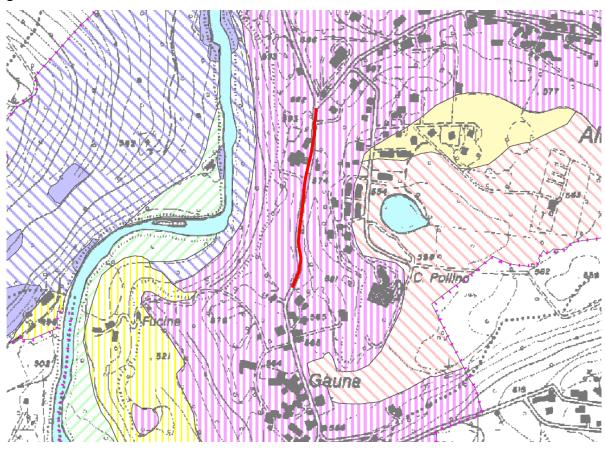


Foto 2 vista di un tratto del lato a monte della strada

Dalla consultazione della Carta litotecnica, Allegato G.3 alla Verifica di Compatibilità idraulica e idrogeologica a supporto dello strumento urbanistico a Cura del Dott. Geol. Carlo Dellarole del settembre 2018, viene confermata la presenza di materiali eterogenei ed eterometrici, con prevalenza di ghiaia poligenica di forma subarrotondata o a spigoli vivi, immersi in matrice limoso sabbiosa di colore nocciola a marrone a bruno con discreto grado di cementazione fra gli elementi. Nel deposito sono presenti blocchi di dimensioni metriche. In superficie è possibile talora riscontrare la presenza di un suolo o di paleosuolo di colore tendente al rosso-bruno. Lungo i pendii a moderata acclività può essere presente una coltre colluviale limosa di potenza da decimetrica a metrica. In questi settori potranno essere

STUDIO ASSOCIATO STUDIO ASSOCIATO	Codice: P242S1	Attività: COS	Versione: V00
GEOLOGICA Geol. Chiuminatto & Duregon Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Titolo Elaborato: Relazione geologica		Data:
		nittente: i Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 8 di 28

adottate fondazioni dirette nastriformi, impostate entro i livelli grossolani con maggiore grado di addensamento.

Estratto da: Carta litotecnica

Depositi costituiti da materiali eterogenei ed eterometrici, con prevalenza di ghiaia poligenica di forma subarrotondata o a spigoli vivi, immersi in matrice limoso-sabbiosa di colore da nocciola a marrone a bruno, con un discreto grado di cementazione fra gli elementi. Nel deposito sono presenti blocchi di dimensioni metriche. In superficie è possibile talora riscontrare la presenza di un suolo o di un paleosuolo di colore tendente al rosso-bruno. Lungo i pendii a moderata acclività può essere presente una coltre colluviale limosa di potenza da decimetrica a metrica. In questi settori potranno essere adottate fondazioni dirette nastriformi, impostate entro i livelli grossolani con maggiore grado di addensamento. Le condizioni di stabilità risultano da sufficienti a discrete lungo i versanti esterni (con l'innesco di sporadici e ben localizzati fenomeni gravitativi) e da incerte a insufficienti lungo i versanti interni dell'Anfiteatro (con l'innesco di evidenti ed estesi processi).

Tratto di strada oggetto d'intervento

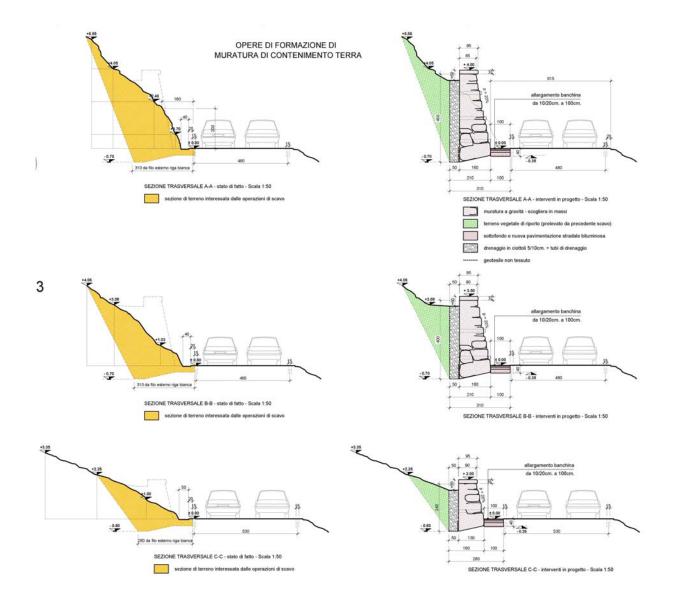
Sulla base dei dati raccolti il settore appare costituito, procedendo dalla superficie in profondità (vedi foto), da:

da (m)	a (m)	Litotipo
0.0	0.4	Coltre superficiale/riporti per la realizzazione della carreggiata stradale
0.4	3.0	Frammenti rocciosi, blocchi trovanti immersi in matrice limoso sabbiosa (depositi glaciali)

STUDIO ASSOCIATO STUDIO ASSOCIATO	Codice: P242S1	Attività: COS	Versione: V00
GEOLOGICA Geol. Chiuminatto & Duregon Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Titolo Elaborato: Relazione geologica		Data:
		nittente: i Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 9 di 28

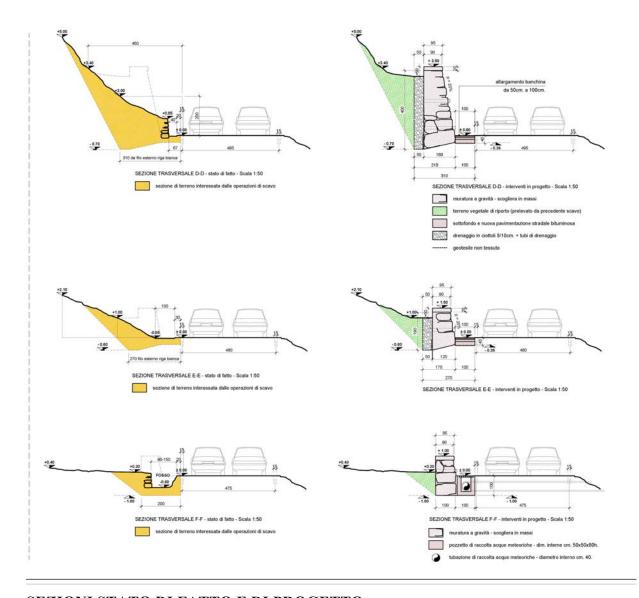
Foto 3 - Frammenti rocciosi, blocchi trovanti immersi in matrice limoso sabbiosa

3.4 Descrizione dell'intervento


Il versante collinare a ridosso della banchina in situazioni di precipitazioni intense, tende a dilavare il terreno facendo cadere detriti e frammenti rocciosi sulla strada.

Le opere prevedono l'allargamento della strada esistente per uno sviluppo complessivo di 220 metri circa, sul lato di monte, arretrando il versante mediante formazione di muro di contenimento. L'allargamento della viabilità per circa 1 m comporta lo scavo e rimozione della porzione di versante collinare a ridosso della banchina, arretrandolo per consentire la formazione di un muro in C.A. Alle spalle della muratura verrà realizzato un drenaggio verticale in ciottoli di cava (larghezza cm. 50 circa), protetto da tessuto non tessuto, con formazione di tubi di drenaggio attraversanti la muratura, del diametro utile interno di mm.100.

La testa della muratura di sostegno del terrapieno verrà realizzata ad un livello di circa 40/50 cm superiore al piano di scorrimento delle acque di percolamento dal versante, in modo tale da favorire l'eventuale arresto di detriti provenienti da monte per effetti erosivi (*Vedi planimetria e sezioni di progetto*).


L'altezza del fronte murario varierà da un minimo di metri 1 ad un massimo di metri 4,00.

STUDIO ASSOCIATO STUDIO ASSOCIATO	Codice: P242S1	Attività: COS	Versione: V00
GEOLOGICA Geol. Chiuminatto & Duregon Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO)	Titolo Elaborato: Relazione geologica		Data:
Tel/Fax 0125.615815 - Cell. +393486008399 e-mail : info@studiogeologica.it		nittente: i Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 10 di 28

SEZIONI STATO DI FATTO E DI PROGETTO

STUDIO ASSOCIATO GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Codice: P242S1	Attività: COS	Versione: V00
	Titolo Elaborato: Relazione geologica		Data: Febbraio 2022
	Committente: Comune di Val di Chy		
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 11 di 28

SEZIONI STATO DI FATTO E DI PROGETTO

STUDIO ASSOCIATO GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Codice: P242S1	Attività: COS	Versione: V00
	Titolo E Relazione	Data:	
		nittente: i Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 12 di 28

4 RELAZIONE GEOTECNICA

4.1 Caratteristiche e risultati dell'indagine penetrometrica

Al fine di accertare le caratteristiche litostratigrafiche e geomeccaniche del sottosuolo, sono state eseguite n.3 prove penetrometriche dinamiche con penetrometro superpesante di tipo TG63-100 EML.C (*vedi Prove penetrometriche - Scheda tecnica*) in tre punti lungo la SP64 (*vedi Planimetria con ubicazione prove penetrometriche*).

Per ottenere la resistenza dinamica alla punta (Rpd), in funzione del numero di colpi N rilevati con le prove penetrometriche, è stata utilizzata la Formula Olandese:

$$Rpd = \frac{M^2 \cdot H}{A \cdot e \cdot (M+P)} = \frac{M^2 \cdot H \cdot N}{A\delta \cdot (M+P)}$$

Dove:

Rpd = resistenza dinamica punta (di area A)

 $e = infissione \ per \ colpo = \delta/N$

M = peso massa battente (altezza di caduta H)

P = peso totale aste e sistema di battuta

I risultati delle prove sono riportati in allegato (vedi Prove penetrometriche - Diagrammi prove penetrometriche).

4.2 Caratterizzazione geotecnica dei terreni

Ai fini del corretto dimensionamento delle fondazioni dell'opera in progetto, è stata effettuata una caratterizzazione geotecnica dei terreni costituenti il sottosuolo dell'area in esame. Per ogni prova sono stati individuati dei livelli con comportamento geomeccanico omogeneo.

Di ciascun livello, sulla base della tipologia di materiale (granulare, coesivo o granulare-coesivo), sono stati dedotti i parametri geotecnici (angolo di attrito, densità, coesione, ecc.) utilizzando formule note di letteratura che li correlano ai valori di Nspt (numero colpi prova SPT). Detti valori, inseriti in opportune formule (es. Terzaghi, Meyerhof, Brinch Hansen...) per il calcolo delle capacità portanti, permettono la determinazione dei carichi ammissibili ed il dimensionamento delle fondazioni.

© STUDIO ASSOCIATO G F O L O G L C A	Codice: P242S1	Attività: COS	Versione: V00
GEOLOGICA Geol. Chiuminatto & Duregon Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO)	Titolo E Relazione	Data:	
Tel/Fax 0125.615815 - Cell. +393486008399 e-mail : info@studiogeologica.it		nittente: li Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 13 di 28

I risultati dell'interpretazione delle prove sono riportati in allegato. In dettaglio sono forniti i seguenti parametri geotecnici:

Terreni Granulari

Dr = densità relativa [%] (Terzaghi e Peck 1948, 1967)

 $\phi' = angolo di attrito efficace [°] (Peck, Hanson e Thorburn, 1953, 1974)$

E' = modulo di deformazione drenato [kg/cm²] (D'Apollonia et al., 1970)

Ysat/Yd = peso di volume saturo e secco (Ysat e Yd) [t/m³] (Terzaghi e Peck 1948,1967)

Terreni Coesivi

Cu = coesione non drenata [kg/cm²] (Terzaghi e Peck 1948, 1967)

Ysat = peso di volume saturo (Ysat) [t/m³] (Terzaghi e Peck 1948, 1967)

W = **umidità** (%) (Terzaghi e Peck 1948, 1967)

e = indice dei vuoti (e) (Terzaghi e Peck 1948, 1967)

Sulla base dei dati a disposizione vengono riportate le tabelle riassuntive dei parametri geotecnici rilevati.

Prova DIN1

Prof. (m)	Litologia	Nspt	pt Natura granulare			1	Vatura	Coesi	iva		
			DR	ϕ '	E'	Ysat	Yd	Си	Ysat	W	e
0.00-0.40	Coltre superficiale	9	31.7	26.6	261	1.92	1.48	0.56	1.89	34	0.918
0.40- 2.80	Framm. Rocciosi in matrice fine	13	39.5	29.0	292	1.95	1.53	0.81	1.93	30	0.818
2.80-3.00	Trovante/Blocco	57	87.6	44.2	631	2.17	1.87				

Prova DIN2

Prof. (m)	Litologia	Nspt Natura granulare			Ι	Vatura	Coesi	iva			
			DR	ϕ'	E'	Ysat	Yd	Cu	Ysat	W	e
0.00-0.40	Coltre superficiale/Riporti	6	21.7	24.5	238	1.89	1.43	0.38	1.85	37	1.000
0.40-1.40	Framm. Rocciosi in	30	65.0	36.2	423	2.05	1.69	1.88	2.14	18	0.490
	matrice fine										
1.40-1.60	Trovante/Blocco	52	85.8	42.9	592	2.16	1.86				

STUDIO ASSOCIATO GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Codice: P242S1	Attività: COS	Versione: V00
	Titolo E Relazion e	Data:	
		nittente: i Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 14 di 28

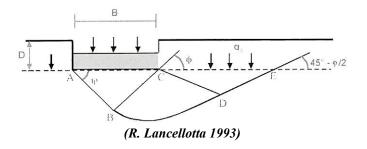
Prova DIN3

Prof. (m)	Litologia	Nspt	Nspt Natura granulare			Ι	Vatura	Coesi	iva		
			DR	ϕ'	E'	Ysat	Yd	Cu	Ysat	W	e
0.00-0.40	Coltre superficiale/Riporti	12	38.0	28.4	284	1.94	1.52	0.75	1.92	31	0.842
0.40-1.60	Framm. Rocciosi in	27	60.5	35.1	399	2.03	1.66	1.69	2.10	20	0.539
	matrice fine										
1.60-1.80	Trovante/Blocco	49	84.0	42.1	569	2.15	1.84				

Dal confronto dei dati relativi alla Rpd, emerge, al di sotto del piano stradale, la presenza di un livello coltre di 0.40 m, che copre un deposito caratterizzato da maggiore resistenza alla punta con frequenti ciottoli e blocchi (depositi glaciali). Ne consegue che le opere in progetto, anche in relazione alle quote previste a progetto, verranno tutte immorsate all'interno dei depositi glaciali.

Al fine di fornire, come previsto dalle N.T.C. una stima cautelativa dei parametri geotecnici, è stata pertanto effettuata un'elaborazione statistica dei dati prendendo a riferimento il valore del 5 percentile della media della popolazione. Ai valori ottenuti, sono stati poi applicati i coefficienti parziali γ_m come riportato alla tabella 6.2.II – par 6.2.4.1.2 D.M. 17/01/2018 nei casi M1 e M2.

Litologia	Coefficiente parziale M1			Coefficiente parziale M2			
	tan φ'd	c'd	γd	tan φ'd	c'd	γd	
	(°)	(kPa)	(kN/m^3)	(°)	(kPa)	(kN/m^3)	
Framm. Rocciosi in matrice fine	28.1	10	16.9	23.1	7	16.9	

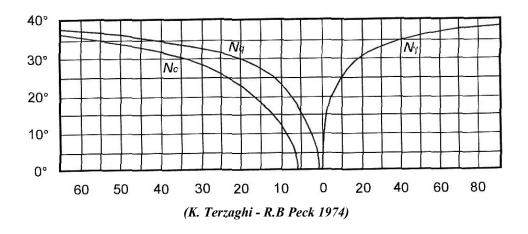

4.3 Calcolo preliminare del carico ultimo del terreno di fondazione

Al fine di valutare in prima approssimazione il carico ammissibile di una fondazione superficiale, sono state utilizzate le equazioni proposte da Terzaghi (1943) e Meyerhoff (1953).

4.3.1 Metodo di Terzaghi

Il metodo di Terzaghi viene utilizzato nel caso di analisi per calcolo delle capacità portanti di una fondazione superficiale nell'ipotesi di base ruvida della fondazione ed attrito che impedisce l'espansione laterale del terreno.

STUDIO ASSOCIATO STUDIO ASSOCIATO	Codice: P242S1	Attività: COS	Versione: V00
GEOLOGICA Geol. Chiuminatto & Duregon Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO)	Titolo E Relazione	Data:	
Tel/Fax 0125.615815 - Cell. +393486008399 e-mail : info@studiogeologica.it		nittente: i Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 15 di 28

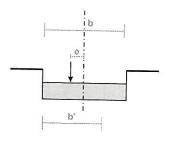


Il metodo considera la resistenza del peso del terreno del sovraccarico e della coesione mediante l'equazione:

$$q = c N_c + q_\theta N_q + \theta.5 \gamma B N_\gamma$$

in cui:

B è la larghezza della fondazione φ angolo di attrito c coesione γ peso di volume q_0 sovraccarico = γ *D D piano di posa della fondazione N_c N_q N_γ fattori di capacità portante che dipendono dall'angolo di attrito (Vedi tabella sottostante)



4.3.2 Metodo di Meyerhof

Il metodo di Meyerhof modifica l'originaria equazione di Terzaghi introducendo dei termini che tengono conto dell'eccentricità e dell'inclinazione del carico.

Tale metodo, per carichi non centrati, attribuisce una larghezza fittizia (b') della fondazione centrata sul carico.

STUDIO ASSOCIATO GEOLOGICA GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO)	Codice: P242S1	Attività: COS	Versione: V00
	Titolo E Relazione	Data:	
Tel/Fax 0125.615815 - Cell. +393486008399 e-mail : info@studiogeologica.it	Comm Comune d	Febbraio 2022	
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 16 di 28

(G.G. Meyerhof, 1953)

$$b' = b - 2e$$

L'equazione di Meyerhof diventa:

$$q = \psi_1(c N_c + q_0 N_q) + \psi_2 0.5 \gamma b' N_\gamma$$

 $\psi_1 (1-2\delta/\pi)^2$

 $\psi_2(1-\delta/\pi)^2$

φ angolo di attrito

 δ angolo di inclinazione del carico rispetto alla verticale

c coesione

γ peso di volume

 q_0 sovraccarico = $\gamma *D$

 $N_c N_q N_\gamma$ fattori di capacità portante che dipendono dall'angolo di attrito

4.3.3 Risultati delle simulazioni

Nel caso in esame è stata condotta una simulazione di calcolo del carico ultimo in grado di portare a rottura il terreno di fondazione, sulla base dei risultati derivanti dalla prova penetrometrica, ipotizzando la realizzazione di una fondazione superficiale nastriforme di larghezza pari a 1.6 m impostata sui depositi glaciali a -1.0 m.

Le simulazioni al carico ultimo sono state condotte applicando i parametri geotecnici del terreno divisi per il coefficiente di riduzione γ_m riportato alla tabella 6.2.II – par 6.2.3.1.2 D.M. 14/01/2008 nei casi M1 e M2, senza applicare i coefficienti parziali relativi alle azioni e agli effetti delle azioni γ_f né i coefficienti parziali γ_r relativi ai calcoli della capacità portante (tabella 6.2.I e 6.4.I D.M. 14/01/2008).

I risultati sono riportati di seguito.

© STUDIO ASSOCIATO G F O L O G L C A	Codice: P242S1	Attività: COS	Versione: V00
GEOLOGICA Geol. Chiuminatto & Duregon Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO)	Titolo E Relazione	Data:	
Tel/Fax 0125.615815 - Cell. +393486008399 e-mail : info@studiogeologica.it	Comm Comune d	Febbraio 2022	
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 17 di 28

Prof. Piano	Coefficient	te parziale M1	Coefficiento	e parziale M2
fondazione	Terzaghi	Meyerhoff	Terzaghi	Meyerhoff
(m da p.c.)	Qult	Qult	Qult	Qult
(iii da p.c.)	(kg/cm ²)	(kg/cm ²)	(kg/cm ²)	(kg/cm ²)
1.0	5.71	4.68	3.02	2.43

In accordo con quanto previsto dalle N.T.C., sarà cura del progettista, alla luce del tipo di approccio ritenuto più idoneo, utilizzando i valori di progetto delle variabili geotecniche forniti nella presente relazione ed applicando i coefficienti parziali di amplificazione delle azioni e di riduzione della capacità portante, verificare la stabilità dell'opera in progetto.

4.4 Calcolo preliminare dei cedimenti di fondazioni di tipo superficiale

Al fine di valutare in prima approssimazione i cedimenti di una fondazione di tipo continuo a trave rovescia, si è applicato il Metodo Schmertmann (1970), che esprime una valutazione empirica del calcolo, utilizzando i dati derivanti dalle SPT in terreni incoerenti. In particolare è stato ricostruito un modello del terreno che definisce le litologie che si incontrano a partire dal piano di base della fondazione, esprimendo per ciascun livello il numero medio di N_{SPT}.

È stata effettuata l'ipotesi con piano d'appoggio impostato a 1.0 m di profondità.

Pressione	Cedimento immediato	Cedimento a 30 anni
(kg/cmq)	(cm)	(cm)
1,00	0,592	0,886
1,50	0,926	1,385
2,00	1,258	1,881
2,50	1,589	2,376
3,00	1,919	2,870

Si sottolinea che i risultati sopra riportati hanno valore indicativo, in quanto considerano una fondazione con le caratteristiche specifiche ipotizzate negli elaborati di calcolo. Sarà cura del progettista, sulla base della tipologia e delle caratteristiche delle opere fondazionali, calcolare i cedimenti effettivi e verificare la compatibilità degli stessi con la struttura in funzione dei carichi reali applicati.

STUDIO ASSOCIATO GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO)	Codice: P242S1	Attività: COS	Versione: V00
	Titolo Elaborato: Relazione geologica		Data:
Tel/Fax 0125.615815 - Cell. +393486008399 e-mail : info@studiogeologica.it		nittente: i Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_COS_E00_definitivo.doc		Pag. 18 di 28

5 MODELLO GEOFISICO

5.1 Prospezione sismica di tipo "MASW" (Multichannel Analysis of Surface Waves) e categoria di suolo di fondazione

Ai fini della caratterizzazione sismica dei litopitipi costituenti il sottosuolo è stata eseguita una prospezione sismica di tipo MASW (Multichannel Analysis of Surfaces Waves). La tipologia d'indagine si propone di individuare il profilo di velocità delle onde di taglio verticali Vs, basandosi sulla misura delle onde superficiali (onde di Rayleigh), che viaggiano con una velocità correlata alla rigidezza della porzione di terreno interessata dalla propagazione delle onde. In un mezzo stratificato le onde di Rayleigh sono dispersive, cioè onde con diverse lunghezze d'onda si propagano con diverse velocità di fase e velocità di gruppo (Achenbach, J.D., 1999, Aki, K. and Richards, P.G., 1980) o detto in maniera equivalente la velocità di fase (o di gruppo) apparente delle onde di Rayleigh dipende dalla frequenza di propagazione (da "Caratterizzazione sismica dei suoli con il metodo MASW (Multichannel Analysis of Surface Waves - Ing. Vitantonio Roma).

La natura dispersiva delle onde superficiali è correlabile al fatto che onde ad alta frequenza con lunghezza d'onda corta si propagano negli strati più superficiali e quindi danno informazioni sulla parte più superficiale del suolo, invece onde a bassa frequenza si propagano e quindi interessano e caratterizzano gli strati più profondi del suolo (vedi *Fig.* 5.1).

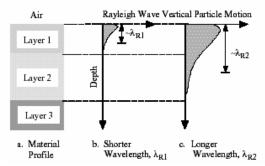


Fig. 5.1 – La profondità investigata dalle onde di Rayleigh dipende dalla lunghezza d'onda, dalla velocità delle onde di taglio Vs e dalla frequenza. (Stokoe II and Santamarina, 2000).

Nel dettaglio, nel caso in esame, viste le condizioni morfologiche e di operatività del sito di indagine, è stata eseguita una campagna di prospezione MASW attiva (vedi *Fig. 5.2*) sviluppata su di uno stendimento geofonico effettuato sul lato a monte della strada. Lo

STUDIO ASSOCIATO GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Codice: P242S1	Attività: COS	Versione: V00
	Titolo Elaborato: Relazione geologica		Data:
		nittente: li Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_COS_E00_definitivo.doc		Pag. 19 di 28

stendimento è costituito da n. 12 geofoni verticali da 4.5 Hz ad interasse pari a circa 5 m per una lunghezza complessiva di circa 55 m.

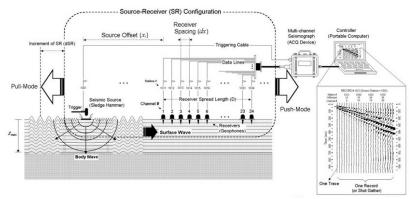


Fig. 5.2 – Schema tipo prospezione sismica "MASW" attiva.

L'indagine è consistita nell'acquisizione del segnale prodotto percuotendo con una mazza del peso di circa 6 kg una piastra metallica posta diretto contatto con il terreno. L'avvio dell'acquisizione è stato realizzato mediante la posa in prossimità della piastra metallica di battuta di un geofono detto "di trigger" o "starter", collegato a sua volta all'apparecchiatura per la registrazione del segnale.

Per aumentare il Rapporto S/N (Segnale/Rumore) è stata attivata la procedura di "vertical stacking" in corrispondenza di ciascun punto sorgente di onde, che consiste nell'eseguire più scoppi, reiterando la misura e sommando i valori registrati di volta in volta.

L'elaborazione dei dati acquisiti è stata effettuata per mezzo del programma Surfseis 2.0 elaborato dal Kansas Geological Survey dell'Università del Kansas (U.S.A.).

A partire dai dati registrati in sito il programma ricostruisce l'immagine di dispersione, detta anche "Overtone", che indica la distribuzione della velocità di fase (asse delle ordinate) delle onde sismiche rispetto alla frequenza d'onda (asse delle ascisse) (vedi *Fig. 5.3* – Overtone e curva di dispersione).

STUDIO ASSOCIATO GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Codice: P242S1	Attività: COS	Versione: V00
	Titolo Elaborato: Relazione geologica		Data:
		nittente: li Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_COS_E00_definitivo.doc		Pag. 20 di 28

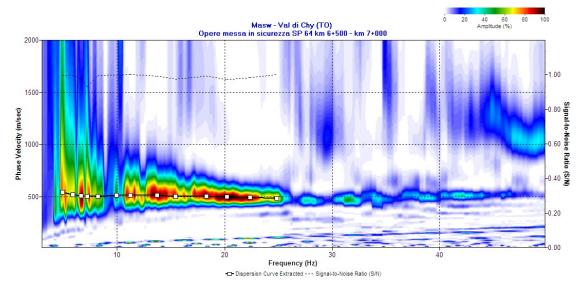


Fig. 5.3 – Overtone e curva di dispersione (in alto è riportato l'andamento del rapporto segnale/rumore).

Per mezzo del processo di inversione il programma ricava l'andamento della velocità delle onde di taglio (Vs) dei depositi costituenti il sottosuolo secondo la configurazione correlata alla curva di dispersione teorica che meglio approssima la curva di dispersione ottenuta dai dati misurati in sito. In tal modo è stato possibile risalire all'andamento delle velocità delle onde di taglio (Vs) relative ad ogni registrazione che, per convenzione, vengono attribuite al punto medio dello stendimento (vedi *Fig. 5.4 - Profilo stratigrafico monodimensionale delle Vs*).

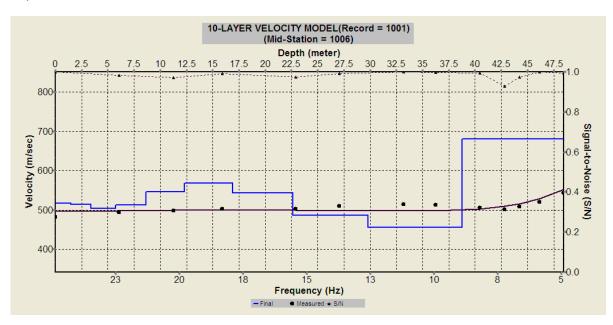


Fig. 5.4 – Profilo stratigrafico monodimensionale delle Vs.

STUDIO ASSOCIATO GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO)	Codice: P242S1	Attività: COS	Versione: V00
	Titolo Elaborato: Relazione geologica		Data:
Tel/Fax 0125.615815 - Cell. +393486008399 e-mail : info@studiogeologica.it		nittente: i Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_COS_E00_definitivo.doc		Pag. 21 di 28

Noti quindi i valori di Vs dei vari orizzonti indagati è stato calcolato il valore di V_{S,eq}, ossia la velocità media di propagazione delle onde di taglio, mediante la relazione di seguito riportata (D.M. 17/01/2018):

$$Vs, eq = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{v_{S,i}}}$$

dove:

 h_i [m]: spessore dello strato i-esimo;

 $v_{S,i}$ [m/s]: velocità delle onde di taglio dello strato i-esimo;

N: numero totale di strati;

H: profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio V_{S,eq} è definita dal parametro V_{S,30}, ottenuto ponendo H=30 m e considerando le proprietà degli strati di terreno fino a tale profondità.

Per il sito in esame il substrato rigido non è stato raggiunto, pertanto si è ricavato un valore di Vs,30 di 522,67 m/s (vedi *Tabella valori di calcolo*) corrispondente ad una Categoria di Suolo di tipo B.

TABELLA VALORI DI CALCOLO

Sito di indagine: SP64 Val di Chy

Strato num.	Prof. Max strato	spessore strato h _i [m]	Velocità onde di taglio V _i [m/s]	h _i /V _i [s]
1	1,50	1,50	517,65	0,003
2	3,38	1,88	514,53	0,004
3	5,73	2,35	503,86	0,005
4	8,66	2,93	513,23	0,006
5	12,33	3,67	545,65	0,007
6	16,91	4,58	567,86	0,008
7	22,64	5,73	543,53	0,011
8	30,00	7,36	486,11	0,015
			S(hi/Vi)	0.057

 $V_{s,30}$ [m/s] = 522,67

Categoria = B

	STUDIO ASSOCIATO GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Codice: P242S1	Attività: COS	Versione: V00
		Titolo Elaborato: Relazione geologica		Data:
			nittente: i Val di Chy	Febbraio 2022
	Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 22 di 28

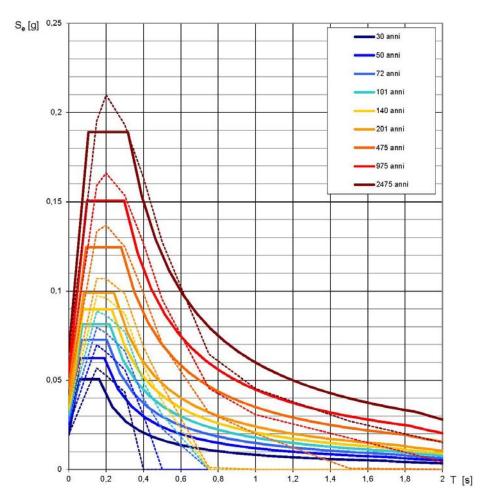
5.2 Parametri sismici e categoria di suolo di fondazione

In conformità con il **D.M. 17.01.2018** "Norme tecniche per le costruzioni", sono stati identificati i parametri sismici del sito sulla base delle coordinate, utilizzando il programma di calcolo Spettri-NTC ver 1.0.3.

I dati del reticolo sismico per la determinazione dell'accelerazione al suolo risultano:

- Coordinate geografiche:

Longitudine = 7,768011


Latitudine = 45,458375

Di seguito si riportano i valori dei parametri sismici ed i relativi spettri di risposta elastici per i periodi di ritorno T_R di riferimento caratteristici del sito in esame.

T _R [anni]	a _g [g]	F ₀ [-]	Tc [*] [s]
30	0,020	2,599	0,161
50	0,024	2,591	0,190
72	0,027	2,657	0,203
101	0,031	2,667	0,218
140	0,034	2,673	0,230
201	0,037	2,677	0,243
475	0,046	2,698	0,280
975	0,055	2,763	0,297
2475	0,066	2,862	0,317

 $Valori\ dei\ parametri\ a_g,\ F_o,\ {T_C}^*\ per\ i\ periodi\ di\ ritorno\ T_R\ di\ riferimento\ per\ il\ sito\ in\ esame$

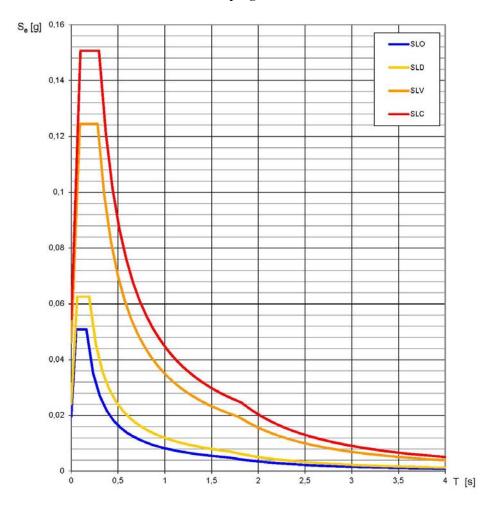
STUDIO ASSOCIATO GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO)	Codice: P242S1	Attività: COS	Versione: V00
	Titolo Elaborato: Relazione geologica		Data:
Tel/Fax 0125.615815 - Cell. +393486008399 e-mail : info@studiogeologica.it		nittente: li Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_COS_E00_definitivo.doc		Pag. 23 di 28

Spettri di risposta elastici per i periodi di ritorno T_R di riferimento per il sito in esame

Noti quindi i parametri correlati alla tipologia di opera in progetto è stato possibile risalire ai parametri sismici per i periodi di ritorno T_R associati a ciascun stato limite.

Caratteristiche opere in progetto (da verificare a cura del progettista)

- V_N (opera infrastrutturale di importanza normale) ≥ 50 anni


- Classe d'Uso: II \Rightarrow coeff. $c_u = 1$

 $-V_R = V_N \times c_u = 50 \text{ anni}$

SLATO	T _R	ag	Fo	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	30	0,020	2,599	0,162
SLD	50	0,024	2,592	0,191
SLV	475	0,046	2,698	0,280
SLC	975	0,055	2,763	0,297

STUDIO ASSOCIATO GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Codice: P242S1	Attività: COS	Versione: V00
	Titolo Elaborato: Relazione geologica		Data:
		nittente: i Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_COS_E00_definitivo.doc		Pag. 24 di 28

$\label{eq:Valori dei parametri ag} Valori dei parametri ag, F_o, {T_C}^* \ per \ i \ periodi \ di \ ritorno \ T_R \ associati a \ ciascuno \ SL \ in \ relazione \ all'opera \ in \ progetto$

Spettri di risposta elastici per i periodi di ritorno T_R di riferimento per il sito in esame

STUDIO ASSOCIATO GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO)	Codice: P242S1	Attività: COS	Versione: V00
	Titolo Elaborato: Relazione geologica		Data:
Tel/Fax 0125.615815 - Cell. +393486008399 e-mail : info@studiogeologica.it	Committente: Comune di Val di Chy		Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_COS_E00_definitivo.doc		Pag. 25 di 28

Foto 4-5 Area in esame e attrezzatura utilizzata per le indagini

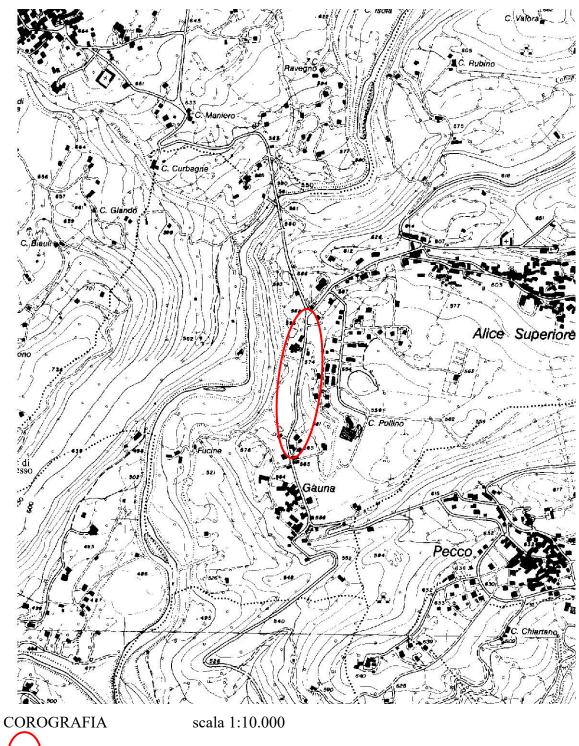
STUDIO ASSOCIATO GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO) Tel/Fax 0125.615815 - Cell. +393486008399 e-mail: info@studiogeologica.it	Codice: P242S1	Attività: COS	Versione: V00
	Titolo Elaborato: Relazione geologica		Data:
		nittente: i Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_COS_E00_definitivo.doc		Pag. 26 di 28

6 CONCLUSIONI

Lo studio geologico dell'area di intervento, ha consentito di verificare come non sussistano controindicazioni alla realizzazione delle opere di messa in sicurezza in progetto in relazione all'assetto geologico ed idrogeologico del territorio.

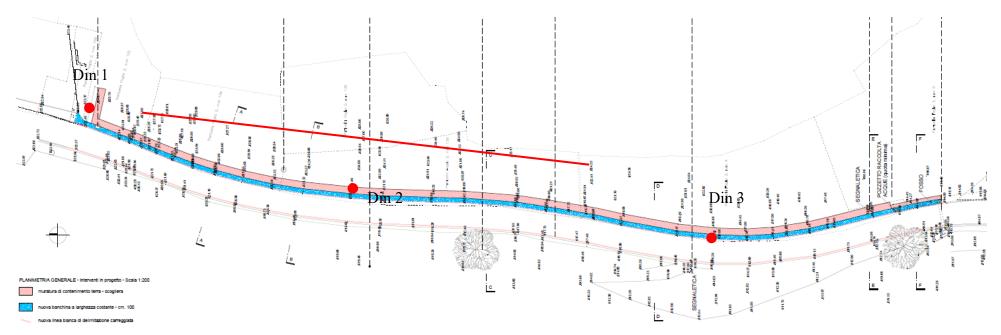
L'intervento comporta lo scavo e rimozione dei depositi glaciali della porzione di versante collinare a ridosso della banchina, per garantire un allargamento di circa 1 metro.

Vista la pendenza di alcuni tratti del versante dove si prevede la realizzazione del muro, particolare cautela dovrà essere posta durante la fase di sbancamento avendo cura di rimuovere eventuali blocchi e frammenti rocciosi instabili che si possono distaccare improvvisamente man mano che viene realizzato lo scavo.


Le indagini di dettaglio hanno confermato la presenza di una coltre superficiale potente 0.4 m che copre i depositi glaciali formati da materiali a varia granulometria: ghiaie e sabbie con ciottoli e trovanti immersi in matrice limosa. In affioramento i depositi presentano angoli superiori ai 50° rispetto all'orizzontale, a tratti subverticali. Ne consegue che i fronti di scavo andranno sagomati con angoli non superiori a 45° avendo cura di rimuovere eventuali massi in equilibrio precario.

In merito agli aspetti geotecnici in relazione sono riportati i valori caratteristici dei parametri del terreno divisi per il coefficiente di riduzione γ_m riportato alla tabella 6.2.II – par 6.2.4.1.2 D.M. 17/01/2018 nei casi M1 e M2 per la verifica agli SLU ed agli SLE delle fondazioni esistenti e degli eventuali adeguamenti in progetto.

Da un punto di vista sismico per il suolo di fondazione si propone la **categoria B** mentre la categoria topografica **T2**. In relazione sono inoltre forniti i parametri sismici del sito, anche in relazione al tipo di opera in progetto per i diversi stati limite.


Durante la fase esecutiva, in coerenza con le NTC 2018, si prescrive una verifica geotecnica al fine di confermare la modellazione geologica fornita in relazione, verificando la corretta sagomatura dei fronti di scavo e la regimazione delle acque.

© STUDIO ASSOCIATO STUDIO ASSOCIATO	Codice: P242S1	Attività: COS	Versione: V00
GEOLOGICA Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO)	Titolo E Relazione	Data:	
Tel/Fax 0125.615815 - Cell. +393486008399 e-mail : info@studiogeologica.it		nittente: li Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 27 di 28

Area d'intervento

© STUDIO ASSOCIATO G F O L O G L C A	Codice: P242S1	Attività: COS	Versione: V00
GEOLOGICA Geol. Chiuminatto & Duregon Sede operativa: Via Chiuminatto n°5, 10080 Cintano (TO)	Titolo E Relazione	Data:	
Tel/Fax 0125.615815 - Cell. +393486008399 e-mail : info@studiogeologica.it		nittente: li Val di Chy	Febbraio 2022
Esecuzione lavoro: Dr. Geol. Corrado Duregon Ordine dei Geologi della Regione Piemonte n° 439 Sez. A	Nome file: P242S1_0	COS_E00_definitivo.doc	Pag. 28 di 28

PLANIMETRIA DI PROGETTO

Din N

• Ubicazione prove penetrometriche dinamiche

_____ Ubicazione prospezione sismica MASW

PENETROMETRO DINAMICO IN USO: TG 63-100 EML.C

Classificazione ISSMFE (1988) dei penetrometri dinamici												
TIPO	Sigla Certificato	Peso Ma	issa Ba M (kg									
Leggero	DPL (Light)		M <	10								
Medio	DPM (Medium)	10 <	M <	40								
Pesante	DPH (Heavy)	40 ≤	M <	60								
Super pesante	DPSH (Super Heavy)		$M \geq$	60								

Certificato: 220230

(teoricamente : Nspt = β t N)

CARATTERISTICHE TECNICHE: TG 63-100 EML.C

COEFF.TEORICO DI ENERGIA

PESO MASSA BATTENTE	M = 63.50 kg
ALTEZZA CADUTA LIBERA	$H = 0.75 \mathrm{m}$
PESO SISTEMA BATTUTA	Ms = 0.63 kg
DIAMETRO PUNTA CONICA	D = 51.00 mm
AREA BASE PUNTA CONICA	$A = 20.43 \text{ cm}^2$
ANGOLO APERTURA PUNTA	α = 60°
LUNGHEZZA DELLE ASTE	La = 1.00 m
PESO ASTE PER METRO	Ma = 6.31 kg
PROF. GIUNZIONE 1ª ASTA	P1 = 0.40 m
AVANZAMENTO PUNTA	δ = 0.20 m
NUMERO DI COLPI PUNTA	N = N(20) ⇒ Relativo ad un avanzamento di 20 cm
RIVESTIMENTO / FANGHI	NO
ENERGIA SPECIFICA x COLPO	Q = $(MH)/(A_{\delta})$ = 11.66 kg/cm ² (prova SPT : Qspt = 7.83 kg/cm ²)

Valutazione resistenza dinamica alla punta Rpd [funzione del numero di colpi N] (FORMULA OLANDESE):

 $\beta t = Q/Qspt = 1.489$

Rpd = $M^2 H / [A e (M+P)] = M^2 H N / [A \delta (M+P)]$

Rpd = resistenza dinamica punta [area A] M = peso massa battente (altezza caduta H)e = infissione per colpo = δ / N P = peso totale aste e sistema battuta

UNITA' di MISURA (conversioni)

```
1 kg/cm<sup>2</sup> = 0.098067 MPa = \sim 0.1 MPa
1 MPa = 1 MN/m<sup>2</sup> = 10.197 kg/cm<sup>2</sup>
1 bar = 1.0197 kg/cm<sup>2</sup> = 0.1 MPa
1 kN = 0.001 MN = 101.97 kg
```

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

DIN 1

Certificato: 220230

- cantiere : Interventi di messa in sicurezza di SP 64

Comune di Val di Chy - lavoro :

- località : SP 64 dal km 6+500 al km 7+000 Val di Chy - data prova : 12/02/2022

- quota inizio :

- prof. falda : Falda non rilevata

22/02/2022 - data emiss. :

- note:

Prof.(m)	N(colpi p)	Rpd(kg/cm²)	asta	Prof.(m)	N(colpi p)	Rpd(kg/cm²)	asta
0.00 - 0.20	4	42.0	1	1.60 - 1.80	19	169.3	3
0.20 - 0.40	10	105.1	i	1.80 - 2.00	14	124.8	3
0.40 - 0.60	12	115.7	2	2.00 - 2.20	8	71.3	3
0.60 - 0.80	11	106.1	2	2.20 - 2.40	5	44.6	3
0.80 - 1.00	8	77.1	2	2.40 - 2.60	12	99.4	4
1.00 - 1.20	16	154.3	2	2.60 - 2.80	16	132.5	4
1.20 - 1.40	10	96.4	2	2.80 - 3.00	38	314.7	4
1.40 - 1.60	23	204.9	3				

⁻ PENETROMETRO DINAMICO tipo : TG 63-100 EML.C

⁻ M (massa battente)= **63.50** kg - H (altezza caduta)= **0.75** m - Numero Colpi Punta N = N(**20**) [δ = 20 cm]

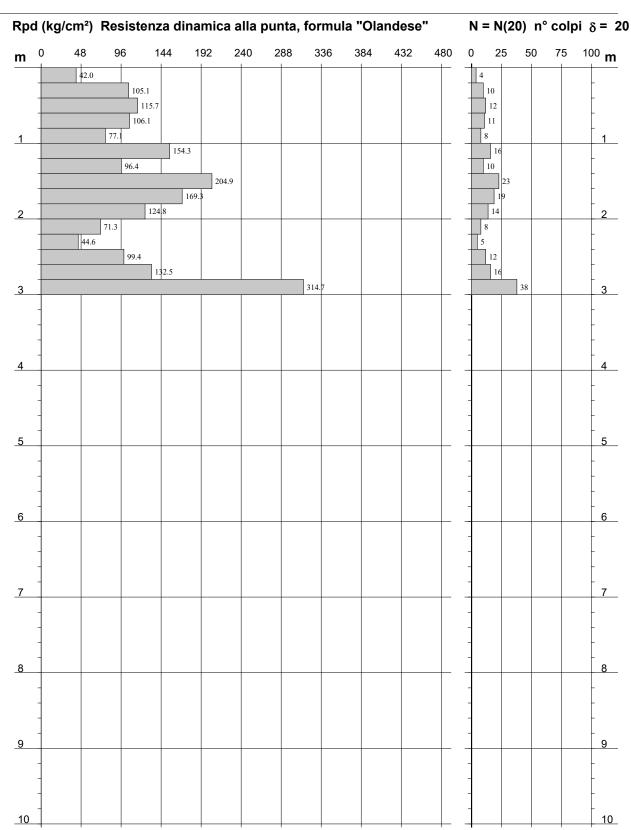
⁻ A (area punta)= 20.43 cm² - D(diam. punta)= 51.00 mm

⁻ Uso rivestimento / fanghi iniezione : NO

Certificato: 220230

PROVA PENETROMETRICA DINAMICA DIAGRAMMA RESISTENZA DINAMICA PUNTA

Scala 1: 50


DIN 1

Interventi di messa in sicurezza di SP 64 - cantiere : - data prova : 12/02/2022 - quota inizio :

Comune di Val di Chy - lavoro : - località :

p.c. SP 64 dal km 6+500 al km 7+000 Val di Chy - prof. falda : Falda non rilevata

- data emiss. : 22/02/2022

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

DIN 1

Certificato: 220230

Interventi di messa in sicurezza di SP 64 - cantiere :

Comune di Val di Chy - lavoro :

- località : SP 64 dal km 6+500 al km 7+000 Val di Chy - data prova: 12/02/2022

- quota inizio :

- prof. falda : Falda non rilevata - data emiss. : 22/02/2022

- note :

r	۱°	Profon	dità (m)	PARAMETRO		ELA	BORA	VCA	β	Nspt				
					М	min	Max	½(M+min)	s	M-s	M+s			
	1	0.00	0.40	N Rpd	7.0 73.6	4 42	10 105	5.5 57.8				6 63	1.49	9
	2	0.40	2.80	N Rpd	12.8 116.4	5 45	23 205	8.9 80.5	5.1 44.7	7.8 71.7	17.9 161.0	9 82	1.49	13
	3	2.80	3.00	N Rpd	38.0 314.7	38 315	38 315	38.0 314.7				38 315	1.49	57

M: valore medio min: valore minimo Max: valore massimo s: scarto quadratico medio VCA: valore caratteristico assunto Rpd: resistenza dinamica alla punta (kg/cm²)

N: numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 20 cm) β : Coefficiente correlazione con prova SPT (valore teorico β t = 1.49) Nspt: numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 20 cm) Nspt: numero colpi prova SPT (avanzamento δ = 30 cm)

Nspt - PARAMETRI GEOTECNICI

DIN 1

n°	Prof.(m)	LITOLOGIA	Nspt	NATURA GRANULARE					NA	NATURA COESIVA			
				DR	ø'	Ė	Ysat	Yd	Cu	Ysat	W	е	
1 2 3	0.00 0.40 0.40 2.80 2.80 3.00	Coltre superficiale Framm. rocciosi in matrice fine Blocco	9 13 57	31.7 39.5 87.6	26.6 29.0 44.2	261 292 631	1.92 1.95 2.17	1.48 1.53 1.87	0.56 0.81 	1.89 1.93 	34 30 	0.918 0.818 	

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa ø' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

E' (kg/cm²) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m³) = peso di volume saturo e secco (rispettivamente) del terreno GEA S.r.l. Via Casale, 8 10015 Ivrea (TO)

> PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

DIN 2

Certificato: 220230

- cantiere : Interventi di messa in sicurezza di SP 64

Comune di Val di Chy - lavoro :

- località : SP 64 dal km 6+500 al km 7+000 Val di Chy - data prova : 12/02/2022

- quota inizio :

- prof. falda : Falda non rilevata

22/02/2022 - data emiss. :

- note:

Prof	.(m)	N(colpi p)	Rpd(kg/cm²)	asta	Prof.(m)	N(colpi p)	Rpd(kg/cm²)	asta
0.00 -	0.20	3	31.5	1	0.80 - 1.00	16	154.3	2
0.20 -	0.40	4	42.0	1	1.00 - 1.20	21	202.5	2
0.40 -	0.60	21	202.5	2	1.20 - 1.40	24	231.4	2
0.60 -	0.80	18	173.6	2	1.40 - 1.60	35	311.9	3

⁻ PENETROMETRO DINAMICO tipo : TG 63-100 EML.C

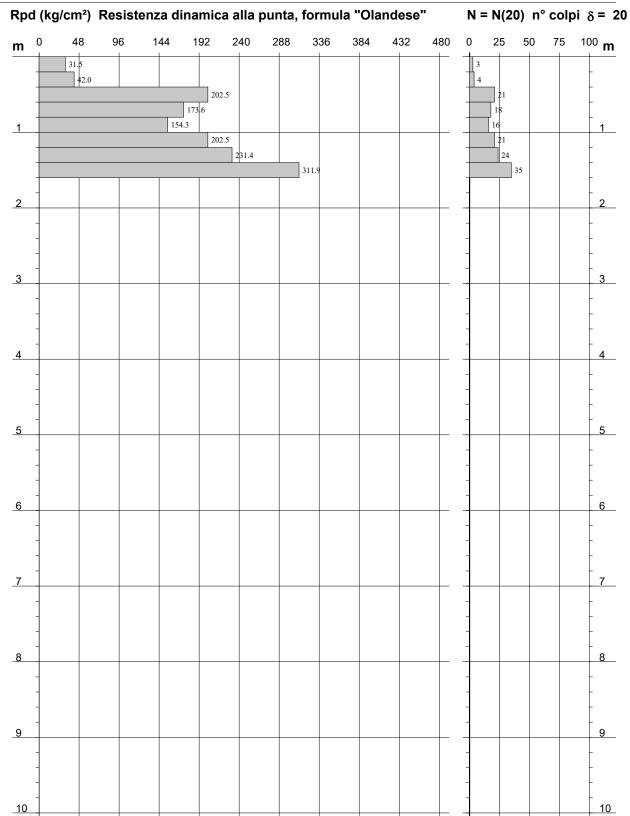
⁻ M (massa battente)= **63.50** kg - H (altezza caduta)= **0.75** m - Numero Colpi Punta N = N(**20**) [δ = 20 cm]

⁻ A (area punta)= 20.43 cm² - D(diam. punta)= 51.00 mm

⁻ Uso rivestimento / fanghi iniezione : NO

Certificato: 220230

PROVA PENETROMETRICA DINAMICA DIAGRAMMA RESISTENZA DINAMICA PUNTA


Scala 1: 50

DIN 2

Interventi di messa in sicurezza di SP 64 - cantiere : - data prova : 12/02/2022 - quota inizio : p.c.

Comune di Val di Chy - lavoro : - località : SP 64 dal km 6+500 al km 7+000 Val di Chy

- prof. falda : Falda non rilevata - data emiss. : 22/02/2022

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

DIN 2

Certificato: 220230

Interventi di messa in sicurezza di SP 64 - cantiere :

Comune di Val di Chy - lavoro :

- località : SP 64 dal km 6+500 al km 7+000 Val di Chy - data prova: 12/02/2022

- quota inizio : p.c.

- prof. falda : Falda non rilevata - data emiss. : 22/02/2022

- note :

n°	Profon	ıdità (m)	PARAMETRO		ELA	BORA	VCA	β	Nspt				
				М	M min Max ½(M+min) s M-s M+s								
1	0.00	0.40	N Rpd	3.5 36.8	3 32	4 42	3.3 34.1				4 42	1.49	6
2	0.40	1.40	N Rpd	20.0 192.9	16 154	24 231	18.0 173.6				20 193	1.49	30
3	1.40	1.60	N Rpd	35.0 311.9	35 312	35 312	35.0 311.9				35 312	1.49	52

M: valore medio min: valore minimo Max: valore massimo s: scarto quadratico medio VCA: valore caratteristico assunto N: numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 20 cm) β : Coefficiente correlazione con prova SPT (valore teorico β t = 1.49) Nspt: numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 20 cm) Rpd: resistenza dinamica alla punta (kg/cm²)

Nspt: numero colpi prova SPT (avanzamento δ = 30 cm)

Nspt - PARAMETRI GEOTECNICI

DIN 2

n°	Prof.(m)	LITOLOGIA	Nspt	NATURA GRANULARE					NA	NATURA COESIVA			
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е	
1 2 3	0.00 0.40 0.40 1.40 1.40 1.60	Coltre superficiale Framm. rocciosi in matrice fine Blocco	6 30 52	21.7 65.0 85.8	24.5 36.2 42.9	238 423 592	1.89 2.05 2.16	1.43 1.69 1.86	0.38 1.88 	1.85 2.14 	37 18 	1.000 0.490 	

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa ø' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

E' (kg/cm²) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m³) = peso di volume saturo e secco (rispettivamente) del terreno PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

DIN 3

Certificato: 220230

- cantiere : Interventi di messa in sicurezza di SP 64

Comune di Val di Chy - lavoro :

- località : SP 64 dal km 6+500 al km 7+000 Val di Chy - data prova : 12/02/2022

- quota inizio :

- prof. falda : Falda non rilevata

22/02/2022 - data emiss. :

- note:

Prof.(m)	N(colpi p)	Rpd(kg/cm²)	asta	Prof.(m)	N(colpi p)	Rpd(kg/cm²)	asta
0.00 - 0.20 0.20 - 0.40	12 6	126.1 63.0	1	1.00 - 1.20 1.20 - 1.40	15 15	144.7 144.7	2
0.40 - 0.60	24	231.4	2	1.40 - 1.60	23	204.9	3
0.60 - 0.80 0.80 - 1.00	30 17	289.3 163.9	2 2	1.60 - 1.80	33	294.1	3

⁻ PENETROMETRO DINAMICO tipo : TG 63-100 EML.C

⁻ M (massa battente)= **63.50** kg - H (altezza caduta)= **0.75** m - Numero Colpi Punta N = N(**20**) [δ = 20 cm]

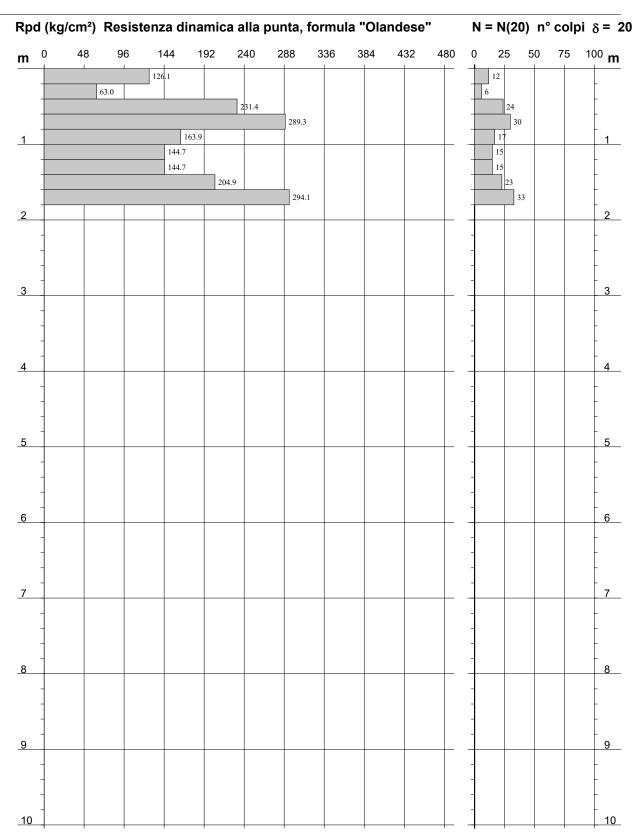
⁻ A (area punta)= 20.43 cm² - D(diam. punta)= 51.00 mm

⁻ Uso rivestimento / fanghi iniezione : NO

Certificato: 220230

PROVA PENETROMETRICA DINAMICA DIAGRAMMA RESISTENZA DINAMICA PUNTA

Scala 1: 50


DIN 3

Interventi di messa in sicurezza di SP 64 - cantiere : - data prova : 12/02/2022 Comune di Val di Chy - quota inizio :

- lavoro : - località : SP 64 dal km 6+500 al km 7+000 Val di Chy

p.c. - prof. falda : Falda non rilevata

- data emiss. : 22/02/2022

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

DIN 3

Certificato: 220230

12/02/2022

p.c.

Interventi di messa in sicurezza di SP 64 - cantiere : - data prova:

Comune di Val di Chy - lavoro : - quota inizio :

- località : SP 64 dal km 6+500 al km 7+000 Val di Chy - prof. falda : Falda non rilevata

- data emiss. : 22/02/2022

- note :

ı	n°	Profon	ıdità (m)	PARAMETRO		ELA	BORA	VCA	β	Nspt				
					М	min	Max	½(M+min)	s	M-s	M+s			
	1	0.00	0.40	N Rpd	9.0 94.6	6 63	12 126	7.5 78.8				8 84	1.49	12
	2	0.40	1.60	N Rpd	20.7 196.5	15 145	30 289	17.8 170.6	6.0 57.2	14.6 139.3	26.7 253.7	18 171	1.49	27
	3	1.60	1.80	N Rpd	33.0 294.1	33 294	33 294	33.0 294.1				33 294	1.49	49

M: valore medio min: valore minimo Max: valore massimo s: scarto quadratico medio VCA: valore caratteristico assunto N: numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 20 cm) β : Coefficiente correlazione con prova SPT (valore teorico β t = 1.49) Nspt: numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 20 cm) Rpd: resistenza dinamica alla punta (kg/cm²)

Nspt: numero colpi prova SPT (avanzamento δ = 30 cm)

Nspt - PARAMETRI GEOTECNICI

DIN 3

n° Prof.(m)		LITOLOGIA	Nspt	NATURA GRANULARE			NATURA COESIVA					
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1 2 3	0.00 0.40 0.40 1.60 1.60 1.80	Coltre superficiale Framm. rocciosi in matrice fine Blocco	12 27 49	38.0 60.5 84.0	28.4 35.1 42.1	284 399 569	1.94 2.03 2.15	1.52 1.66 1.84	0.75 1.69 	1.92 2.10 	31 20 	0.842 0.539

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa ø' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

E' (kg/cm²) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m³) = peso di volume saturo e secco (rispettivamente) del terreno

Calcolo della tensione a rottura di una fondazione superficiale con applicazione coefficiente parziale M1 ai parametri geotecnici (Tab. 6.2.II - D.M. 17/01/2018)

Simulazione condotta escludendo i coeffcienti parziali $\gamma_{\rm f}$ relativi alle azioni e agli effetti delle azioni e $\gamma_{\rm f}$ (Tab. 6.2.I e 6.4.I - D.M. 17/01/2018)

1 - Caratteristiche e tipologia fondale:

B =	1,60	[m]
L=	10,00	[m]
D =	1,00	[m]
R=	0,00	[m]
e =	0,00	[m]
α =	0,00	[°]

2 - Caratteristiche geotecniche del terreno di fondazione con applicazione coefficiente parziale M1:

$\gamma =$	1690,00	[kg / m ³] Presenza della fa	ılda: NO
$\phi =$	28,10	[°]	
$\delta =$	19	[°] Z= 0	[m]
c =	0,00	[kg/cm²]	
Kp =	2,781		
ca =	0,00	[kg/cm²]	

3 - Metodo di calcolo proposto da Terzaghi (1943):

Tipo di Fondazione: Nastriforme

_	
Nq =	17,808
Nc =	31,612
N ₂ =	20 001

Fattori di forma:

1,044 1,104 1,000

4 - Metodo di calcolo proposto da Meyerhof (1963):

Fattori di forma	sc = 1,089	sq = 1,044	sγ =
Fattori di profondità	dc = 1,208	dq = 1,104	$d\gamma = $
Fattori di inclinazione	ic = 1,000	iq = 1,000	$i\gamma =$

Nq =	14,883	Q =	748.037,68	[kg]
Nc =	26,000	Qult =	4,68	[kg / cm ²]
$N\gamma =$	11,379	_		_

LEGENDA:

 $\label{eq:normale} N = S for zo \ normale$ $B = Larghezza \ della \ fondazione \\ T = S for zo \ di \ taglio$

L = Lunghezza della fondazione γ = Peso di volume del terreno

 $D = \textit{Profondità piano di posa fondazione} \qquad \qquad \phi = \textit{Angolo di attrito}$

R = Raggio della fondazione δ = Angolo di attrito terreno - fondazione

Z = Quota falda dal p.c. c = Coesione

e = Eccentricità in B Kp = Coeff. Spinta passiva

 α = Angolo d'inclinazione fondazione ca = adesione lungo la base fondale

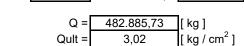
Calcolo della tensione a rottura di una fondazione superficiale con applicazione coefficiente parziale M2 ai parametri geotecnici (Tab. 6.2.II - D.M. 17/01/2018)

Simulazione condotta escludendo i coeffcienti parziali $\gamma_{\rm f}$ relativi alle azioni e agli effetti delle azioni e $\gamma_{\rm f}$ (Tab. 6.2.I e 6.4.I - D.M. 17/01/2018)

1 - Caratteristiche e tipologia fondale:

B =	1,60	[m]
L=	10,00	[m]
D =	1,00	[m]
R=	0,00	[m]
e =	0,00	[m]
α =	0,00	[°]

2 - Caratteristiche geotecniche del terreno di fondazione con applicazione coefficiente parziale M2:


$\gamma =$	1690,00	[kg / m ³]	Presenza della falda: NO
φ =	23,10	[°]	
δ =	15	[°]	Z = 0 [m]
c =	0,00	[kg / cm ²]	
Kp=	2,291		
ca =	0,00	[kg / cm ²]	

3 - Metodo di calcolo proposto da Terzaghi (1943):

Tipo di Fondazione: Nastriforme

Nq = 10,231 Nc = 21,746 $N\gamma = 9,534$

Fattori di forma:

1,037

1,095

1,000

4 - Metodo di calcolo proposto da Meyerhof (1963):

Nq =	8,751	Q =	388.954,16	[kg]
Nc =	18,171	Qult =	2,43	[kg / cm ²]
$N_{\gamma} =$	4,907	_		_

LEGENDA:

N = S for zo normale B = Larghezza della fondazione T = S for zo di taglio

L = Lunghezza della fondazione γ = Peso di volume del terreno

D = Profondità piano di posa fondazione ϕ = Angolo di attrito

R = Raggio della fondazione δ = Angolo di attrito terreno - fondazione

Z = Quota falda dal p.c. c = Coesione

e = Eccentricità in B Kp = Coeff. Spinta passiva

 α = Angolo d'inclinazione fondazione ca = adesione lungo la base fondale

data:	22/02/2022
località:	Val di Chy
dati catastali:	
committente:	Comune di Val di Chy

CALCOLO DEI CEDIMENTI CON IL METODO DI SCHMERTMANN (1970) FONDAZIONE A TRAVE ROVESCIA: (Deformazione assialsimmetrica)

Procedimento di calcolo empirico valido per terreni incoerenti, utilizzando i parametri ricavati dalle indagini geognostiche in sito (prove CPT, SPT, SCPT).

parametri:

profondità piano fondale (Df):		metri
Larghezza della fondazione (B):	1	metri
peso di volume (γ):	1,69	T/mc
tempo di calcolo del cedimento	30	anni

carico (kg/cmq)					
	1,00				
	1,50				
	2,00				
	2,50				
	3,00				

Intorno dei valori di carico ammissibile

coefficient	i correttivi (C1 e C2
C1	0,898	
C1	0,937	
C1	0,954	in funzione del
C1	0,964	carico
C1	0,970	
C2	1,495	in funzione del tempo

STRATIGRAFIA AL DI SOTTO DELLA FONDAZIONE

	spessore	num medio di colpi	coeff. deformazione
	(metri):	nello strato	lz:
1 strato	1,00	13,00	0,45
2 strato	1,00	13,00	0,50
3 strato	1,00	13,00	0,30
4 strato	1,00	13,00	0,10

n.b. la deformazione si annulla alla profondità maggiore di 4 B, i coefficienti di deformazione (Iz) sono calcolati a metà spessore dello strato compressibile

PARAMETRI DI CALCOLO ELABORATI				
	carico	cedimento	cedimento 30 anni	
	kg/cmq	immediato (cm)	secondario (cm)	
	1,00	0,592	0,886	
	1,50	0,926	1,385	
	2,00	1,258	1,881	
	2,50	1,589	2,376	
	3,00	1,919	2,870	

coefficiente di sottofondo (o di Winkler)

min. =	1,56
max =	1,69